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INTRODUCTION 

BtiOvANcY-induced convection is of great importance in 
many heat removal processes in technology. In particular, 
for low-power-level devices, it may be a significant cooling 
mechanism. In such cases, the transfer surface area may be 
increased, as in fins, for au~entation of heat transfer rates. 
In the thermal analysis of vertical fins, it is usually assumed 
that the fin is isothermal. This may be a reasonable assump- 
tion for short fins with high thermal conductance. However, 
long fins with low conductance would not be isothermal and 
for the estimation of heat transfer rates from such fins, the 
conjugate problem of conduction within the fin has to be 
solved simultaneously with natural convection in the ambi- 
ent fluid. A numerical solution of this problem for a short 
plate fin in a fluid with Pr = 0.72 was obtained bv Soarrow 
and Acharya [I]. Lock and Gunn [2] developed a~similarity 
solution for a short, tapered fin in a fluid of infinite Prandtl 
number. Recently, Kuehn et al. [3] presented a similarity 
solution for the conjugate free convection heat transfer from 
a vertical fin of infinite length and obtained results for a 
uniform conductivity plate fin as a function of the fluid 
Prandtl number. 

In the present work, an integral analysis has been carried 
out to obtain a closed-form solution for the heat transfer 
rates from a long, vertical fin with variable conductivity 
and/or thickness. The solution for the special case of fin with 
constant thickness and conductivity has been compared with 
that of Kuehn et al. [3] and a close agreement confirms the 
utility of the proposed equation. 

ANALYSIS AND RESULTS 

Consider an infinitely long, vertical fm as shown in Fig. 1. 
The coordinate system used is also depicted in this figure. The 
base of the fin can be selected arbitrarily if the corresponding 
temperature Ts is known [3]. The fin is at a higher tem- 
perature than that of the ambient fluid. The flow is assumed 
to be laminar. The Boussinesq approximation for the density 
variation is employed and the other Buid properties are taken 
to be constant. Further details of the problem can be found 
in ref. [3]. 

In this paper the case of the fin being hotter than the 
ambient fluid is explicitly considered. However, the analysis 
as well as the results also apply to the case of the fin being 
colder than the bulk fluid. In the latter case, the fin is to be 
inverted. 

The conservation equations for the fluid in the integral 
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FIG. I. The physical model. 

form are as follows [4] : 

and 

Energy balance for the fin with varying thickness and/or 
conductivity yields : 

(3) 

Here the thin fin approximation is employed. The boundary 
conditions for the fin are : 

T, = T,, at X = X,, (4a) 

T,= T, asX+co. (4b) 

The temperature variation of the fin is taken as the power- 
law of the type [3] : 

(Tr - 7-m) = (Tb - T&Y/&)“. (5) 

The following velocity and temperature distributions are 
assumed for the fhrid [4] : 

u/u, = (Y/6)(1- Y/S)2 (6) 

(T- T,) = (TF - T,)(l - Y/S) 2. (7) 

Equations (l)-(3) are solved by using the following power- 
law variations for the boundary-layer thickness (S) and ref- 
erence velocity ( Ur) : 

6 = c,xP’ (8) 
iJ r = --c YP2. 2, (9) 
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NOMENCLATURE 

h local heat transfer coefficient X, location of fin base given by equation (12) 
K fluid thermal conductivity 
& fin thermal conductivity : 

dimensionless vertical coordinate, X/X, 
horizontal coordinate 

L length of the fin along the base Y dimensionless horizontal coordinate, Y/X,. 
NU local Nusselt number, hX,/K 
Pr Prandtl number, v/a Greek symbols 
41 dimensionless total heat transfer per unit length b coefficient of thermal expansion 

along the base, &‘[LXr(T,- 7’J 6 dimensionless boundary-layer thickness 
Ra Rayleigh number, g#?Xz( & - ~~)~(v~) B dimensionless temperature, (T- T,)/( r, - T,). 
Ra* modified Rayleigh number, ~u(~~~X~)~ 
t lin half thickness Subscripts 
U vertical velocity b fin base 
U dimensionless vertical velocity, UX& F fin 
V horizontal velocity r reference quantity 

K 
dimensionless horizontal velocity, VX& t total quantity 
vertical coordinate co ambient fluid. 

The solution to equations (1) and (2) would then yield 

Pl = (1 -n)/4 

P2 = (1 +n)/2 

Z = 801(5n + 3) 

The solution to equation (3) for conductivity-thickness 
product of the fin of the form : 

KFt = KF,~tb * A”” (11) 
as indicated in [3], is manipulated to obtain the following: 

n = 4m-7 

X&b = (Ra*) “‘[4(Kd-K) 

x(4m-7)(5m-S)~-~‘(0)~4” (12) 

where Ra* = g#?@- ~~)f~~(v~). 
From equations (10) and (12), the following results in non- 

dimensional form are derived : 

Temperature gradient : 

-0’(O) = {16(8-15m)/4.5[1+(16-12m)/7(8-5m)Pr]}’~“. 
(13) 

Fin local Nusselt number : 

Nu = (Ra*) I’“[ - ~‘(O)]X’“‘- 2’(xb/&,) 314/2”2. 

Fin total heat transfer : 

qt = (KF~b/K)“7(14-Sm)[(7-4m)(8--Sm)]-411 

418 - 1 Sm)Ra* I!? 

45[1+(16-I2m)/7Pr(S-5m)l . ‘15) 

It is to be noted that only form less than S/15, do the above 
equations give physically meaningful results. The value of 
m = 0 corresponds to a constant-property plate fin con- 
sidered in ref. [3]. From equation (15), the total heat trans- 
ferred from the fin to the ambient fluid, for this special case, 
would be 

(q,),,,=,, = 1.34(K,,,/K) 3:7[Ra*/(1 +2/7Pr)] I!‘. (16) 

Even though the limit of applicability of the integral 
method used in the present analysis is that Pr should be 
around unity, the values of qt predicted by the above equation 
agree to within 9% with those obtained by Kuehn et al. [3] 
for 0.1 < Pr < 100. 

A comparison of the assumed temperature and velocity 
profiles is also made with the similarity solutions obtained 
by Kuehn er al. [3]. The plots are not included here to 
conserve space. The agreement is found to be fairly good. 
The general trend of agreement between these profiles and 
the numerical solutions is observed to be essentially similar 
to that of Squire IS]. 

To demonstrate more clearly the effects of the governing 
parameters on the fin total heat transfer (~3, the result in 
equation (15) is plotted in Fig. 2. The variation of qt with 
-m for different values of Prandtl numbers is shown in this 
figure. It is to be noted that the case of negative values of m 
may correspond to a fin with decreasing thickness and/or to 
a fin material whose conductivity increases as a power-law 
with temperature. As expected, for these cases, the total heat 
transfer is observed to increase with -m increasing. 

CONCLUDING REMARKS 

Thus the present analysis gives an approximate analytical 
solution to the problem of conjugate natural convection heat 
transfer from a long, vertical fin with a variable conductivity 
and/or thickness. The heat transfer dependence on the 
governing parameters of the problem is well defined. Even 
though the results are obtained under the assumption that 
the fin is infinitely long, they may also be employed for 
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RG. 2. The variation of the fin total heat transfer (y,) with 
-m for various values of Prandtl numbers. 
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1. INTRODUCTION 

IMPINGING jets is a well-known and widely used technique 
for realizing high heat transfer rates between a fluid and a 
surface. The low cost and the fine degree of control that gas 
jets permit have made them particularly attractive for cooling 
applications. Specific applications include the cooling of the 
leading edge of turbine blades, the cooling of electrical equip- 
ment, the annealing of metal and plastic sheets, the tempering 
of glass, and the drying of textiles, veneer, paper and film 
materials. Different jet-impingement surface configurations 
varying from a single circular jet to arrays of round or slot 
nozzles are described in ref. [I] which is the most com- 
prehensive survey of jet-impingement heat transfer available 
at the present time. Reference [1], however, does not contain 
any mention of constrained jets, which are the focus of the 
present work. By constrained jet, it is meant that the flow is 
forced to flow back after impinging on the surface rather 
than spreading and flowing over the surface. It is used in 
applications where only localized cooling is desired as shown 
in Fig. 1. 

In order to efficiently design jet-cooling systems, one needs 
to know the dependence of heat transfer rates on variables 
which fully characterize the system. For single round and slot 
nozzles, this dependence can be described in the following 
dimensionless form [ 1] : 

Nu = f (Re,Pr,r/D,H/D). (1) 

I---4- \\\\\\\\\\\\ 
i r 

FIG. 1. A constrained, impinging jet. 

Schliinder and Gnielinski [2] correlated their measurements 
and those of other researchers for free impinging single round 
jets by the following empirical equation : 

Nu D I-l.lD/r 

Pro4* =T l+O.l(H/D-6)D/r 
F(Re). (2) 

The function F(Re) may be represented by the following 
expression : 

F(Re) = 2 Re ‘V’(1 +!EJ’, (3) 

Equations (2) and (3) are valid in the ranges 

2000 ,< Re < 400,000 

2.5 < r/D < 7.5 

2<H/D< 12. 

Equation (2), in general, would not give satisfactory results 
for constrained jets because of the difference in flow charac- 
teristics between free and constrained impinging jets. At 
present, there are no references in the literature concerning 
the case of impinging gas jet heat transfer with a solid bound- 
ary to constrain the radial flow of gas. The present work is 
aimed at examining the influence of Re, H/D and r/D on the 
heat transfer coefficient in the case of a constrained circular 
air jet impinging on a surface. 

2. EXPERIMENTAL ARRANGEMENT AND 
TEST CONDITIONS 

The experimental set-up, which allowed the determination 
of the average heat transfer coefficient between constrained 
air jets and a flat heated surface is schematically shown in Fig. 
2. The heat transfer surface was that of a heated cylindrical 
copper block. The copper block was heated using a cartridge 
heater and was heavily insulated to ensure one-dimensional 
heat flow normal to the heat transfer surface. The copper 
block was instrumented with four copperconstantan thermo- 
couples located on the centerline 3, 16, 28.5 and 41 mm 
away from the surface. The surface temperature was obtained 
by extrapolating the measured linear axial temperature dis- 
tribution The heat flux was obtained by measuring the input 
power to the heater or by using the known thermal con- 
ductivity of the copper specimen and the measured axial 
temperature gradient. The two methods yielded essentially 
the same result (within 5%). 


